Shape DNA: Basic Generating Functions for Geometric Moment Invariants
نویسندگان
چکیده
Geometric moment invariants (GMIs) have been widely used as basic tool in shape analysis and information retrieval. Their structure and characteristics determine efficiency and effectiveness. Two fundamental building blocks or generating functions (GFs) for invariants are discovered, which are dot product and vector product of point vectors in Euclidean space. The primitive invariants (PIs) can be derived by carefully selecting different products of GFs and calculating the corresponding multiple integrals, which translates polynomials of coordinates of point vectors into geometric moments. Then the invariants themselves are expressed in the form of product of moments. This procedure is just like DNA encoding proteins. All GMIs available in the literature can be decomposed into linear combinations of PIs. This paper shows that Hu’s seven well known GMIs in computer vision have a more deep structure, which can be further divided into combination of simpler PIs. In practical uses, low order independent GMIs are of particular interest. In this paper, a set of PIs for similarity transformation and affine transformation in 2D are presented, which are simpler to use, and some of which are newly reported. The discovery of the two generating functions provides a new perspective of better understanding shapes in 2D and 3D Euclidean spaces, and the method proposed can be further extended to higher dimensional spaces and different manifolds, such as curves, surfaces and so on.
منابع مشابه
Image Projective Invariants
In this paper, we propose relative projective differential invariants (RPDIs) which are invariant to general projective transformations. By using RPDIs and the structural frame of integral invariant, projective weighted moment invariants (PIs) can be constructed very easily. It is first proved that a kind of projective invariants exists in terms of weighted integration of images, with relative ...
متن کاملMoment Invariants in Image Analysis
This paper aims to present a survey of object recognition/classification methods based on image moments. We review various types of moments (geometric moments, complex moments) and moment-based invariants with respect to various image degradations and distortions (rotation, scaling, affine transform, image blurring, etc.) which can be used as shape descriptors for classification. We explain a g...
متن کاملFish Shape Recognition using Multiple Shape Descriptors
This paper studies recognition of fish shapes using both Region based and Contour based shape based descriptors[9]. Moment Invariants are chosen as the Region based descriptor and the Simple (geometric) shape descriptors (SSD) are used as Contour based shape descriptors. The shapes are varied through scaling and rotation. Manhattan Distance is used as the classifier. The study of the recognitio...
متن کاملRecurrence Relations for Moment Generating Functions of Generalized Order Statistics Based on Doubly Truncated Class of Distributions
In this paper, we derived recurrence relations for joint moment generating functions of nonadjacent generalized order statistics (GOS) of random samples drawn from doubly truncated class of continuous distributions. Recurrence relations for joint moments of nonadjacent GOS (ordinary order statistics (OOS) and k-upper records (k-RVs) as special cases) are obtained. Single and product moment gene...
متن کاملFast and Efficient Calculations of Structural Invariants of Chirality
Chirality plays an important role in physics, chemistry, biology, and other fields. It describes an essential symmetry in structure. However, chirality invariants are usually complicated in expression or difficult to evaluate. In this paper, we present five general three-dimensional chirality invariants based on the generating functions which are called ShapeDNA. And the five chiral invariants ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1703.02242 شماره
صفحات -
تاریخ انتشار 2017